NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation.

نویسندگان

  • Elena Getmanova
  • Ashish B Patel
  • Judith Klein-Seetharaman
  • Michele C Loewen
  • Philip J Reeves
  • Noga Friedman
  • Mordechai Sheves
  • Steven O Smith
  • H Gobind Khorana
چکیده

Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The (31)P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached -40 degrees C. Below this temperature, the (31)P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above -40 degrees C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, (19)F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the (19)F and the (31)P-labels. The REDOR technique allows (19)F...(31)P distances to be measured out to approximately 12 A with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the (19)F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 A in phosphorylated rhodopsin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High levels of rhodopsin phosphorylation in missense mutations of C-terminal region of rhodopsin.

Rhodopsin phosphorylation was investigated using synthetic C-terminal peptides from rhodopsin. The peptides were phosphorylated by expressed rhodopsin kinase (RK) in the presence of a photolyzed truncated rhodopsin at the C-terminus. No peptide phosphorylation was detected under dark or in conditions in which RK was inactive. However, the phosphorylation rate was significantly higher in the fol...

متن کامل

NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.

We report high resolution solution (19)F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF(3)-CH(2)-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin w...

متن کامل

Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.

Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes tha...

متن کامل

Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions.

Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminu...

متن کامل

Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures.

Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2004